Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047311

RESUMO

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.


Assuntos
MicroRNAs , Estimulação do Nervo Vago , Ratos , Animais , Frequência Cardíaca , Coração , MicroRNAs/genética , Hipertrofia , Inflamação , Fibrose
2.
Cardiovasc Res ; 119(13): 2329-2341, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37516977

RESUMO

AIMS: The brain controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic (vagal) and sympathetic activity. Autonomic control is essential for the development of cardiovascular responses during exercise, however, the patterns of changes in the activity of the two autonomic limbs, and their functional interactions in orchestrating physiological responses during exercise, are not fully understood. The aim of this study was to characterize changes in vagal parasympathetic drive in response to exercise and exercise training by directly recording the electrical activity of vagal preganglionic neurons in experimental animals (rats). METHODS AND RESULTS: Single unit recordings were made using carbon-fibre microelectrodes from the populations of vagal preganglionic neurons of the nucleus ambiguus (NA) and the dorsal vagal motor nucleus of the brainstem. It was found that (i) vagal preganglionic neurons of the NA and the dorsal vagal motor nucleus are strongly activated during bouts of acute exercise, and (ii) exercise training markedly increases the resting activity of both populations of vagal preganglionic neurons and augments the excitatory responses of NA neurons during exercise. CONCLUSIONS: These data show that central vagal drive increases during exercise and provide the first direct neurophysiological evidence that exercise training increases vagal tone. The data argue against the notion of exercise-induced central vagal withdrawal during exercise. We propose that robust increases in the activity of vagal preganglionic neurons during bouts of exercise underlie activity-dependent plasticity, leading to higher resting vagal tone that confers multiple health benefits associated with regular exercise.


Assuntos
Fibras Autônomas Pré-Ganglionares , Nervo Vago , Ratos , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Nervo Vago/fisiologia , Coração/fisiologia , Neurônios , Bulbo
3.
Psychopharmacology (Berl) ; 232(21-22): 3977-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25902875

RESUMO

While treatment options are available, excessive daytime sleepiness (EDS) remains a significant unmet medical need for many patients. Relatively little rodent behavioural pharmacology has been conducted in this context to assess potential pro-vigilant compounds for their ability to restore functional capacity following experimentally induced sleep loss. Male Wistar rats were prepared for electroencephalographic (EEG) recording and subject to 11 h of sleep restriction using a biofeedback-induced cage rotation protocol. A simple response latency task (SRLT) was used to behaviourally index sleep restriction and the effects of pro-vigilant compounds: modafinil, D-amphetamine, caffeine, and the mGlu5-positive allosteric modulator LSN2814617. Sleep restriction resulted in a consistent, quantified loss of non-rapid eye movement (NREM) and REM sleep that impaired SRLT performance in a manner suggestive of progressive task disengagement. In terms of EEG parameters, all compounds induced wakefulness. Amphetamine treatment further decreased SRLT performance capacity, whereas the other three compounds decreased omissions and allowed animals to re-engage in the task. Caffeine and modafinil also significantly increased premature responses during this period, an effect not observed for LSN2814617. While all compounds caused compensatory sleep responses, the magnitude of compensation observed for LSN2814617 was much smaller than would be predicted to result from the prolongation of wakefulness exhibited. Using simple response latencies to index performance, an mGlu5 PAM dramatically increased wakefulness and improved functional capacity of sleep-restricted animals, without eliciting a proportionate compensatory sleep response. This effect was qualitatively distinct from that of amphetamine, caffeine and modafinil.


Assuntos
Nível de Alerta/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Oxidiazóis/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/agonistas , Triazóis/farmacologia , Animais , Compostos Benzidrílicos/farmacologia , Biorretroalimentação Psicológica , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Dextroanfetamina/farmacologia , Eletroencefalografia/efeitos dos fármacos , Masculino , Modafinila , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Sono/efeitos dos fármacos , Privação do Sono , Sono REM/efeitos dos fármacos
4.
PLoS One ; 5(7): e11737, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20686596

RESUMO

Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABAA agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage.


Assuntos
Córtex Cerebelar/fisiologia , Memória/fisiologia , Animais , Córtex Cerebelar/metabolismo , Masculino , Modelos Teóricos , Coelhos
5.
J Neurosci ; 28(45): 11731-40, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18987209

RESUMO

Cranial visceral afferents travel via the solitary tract (ST) to contact neurons within the ST nucleus (NTS) and activate homeostatic reflexes. Hypothalamic projections from the paraventricular nucleus (PVN) release oxytocin (OT) to modulate visceral afferent communication with NTS neurons. However, the cellular mechanisms through which OT acts are poorly understood. Here, we electrophysiologically identified second-order NTS neurons in horizontal brainstem slices by their low-jitter, ST-evoked glutamatergic EPSCs. OT increased the frequency of miniature EPSCs in half of the NTS second-order neurons (13/24) but did not alter event kinetics or amplitudes. These actions were blocked by a selective OT receptor antagonist. OT increased the amplitude of ST-evoked EPSCs with no effect on event kinetics. Variance-mean analysis of ST-evoked EPSCs indicated OT selectively increased the release probability of glutamate from the ST afferent terminals. In OT-sensitive neurons, OT evoked an inward holding current and increased input resistance. The OT-sensitive current reversed at the K(+) equilibrium potential. In in vivo studies, NTS neurons excited by vagal cardiopulmonary afferents were juxtacellularly labeled with Neurobiotin and sections were stained to show filled neurons and OT-immunoreactive axons. Half of these physiologically characterized neurons (5/10) showed close appositions by OT fibers consistent with synaptic contacts. Electron microscopy of medial NTS found immunoreactive OT within synaptic boutons. Together, these findings suggest that OT released from PVN axons acts on a subset of second-order neurons within medial NTS to enhance visceral afferent transmission via presynaptic and postsynaptic mechanisms.


Assuntos
Nervos Cranianos/fisiologia , Neurônios/fisiologia , Ocitocina/farmacologia , Núcleo Solitário/citologia , Transmissão Sináptica/efeitos dos fármacos , Fibras Aferentes Viscerais/fisiologia , Análise de Variância , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Nervos Cranianos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas de Hormônios/farmacologia , Técnicas In Vitro , Masculino , Microscopia Eletrônica de Transmissão/métodos , Neurônios/ultraestrutura , Ocitocina/análogos & derivados , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/fisiologia , Transmissão Sináptica/fisiologia , Fibras Aferentes Viscerais/efeitos dos fármacos
6.
Brain Res ; 1144: 82-90, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17320834

RESUMO

This study evaluated the role of 5-HT7 receptors within the central nervous system in modulating cardiovascular responses to the activation of chemo-, baro- and cardiopulmonary reflexes and in the regulation of mean arterial pressure and heart rate, using intracisternal (i.c.) application of the selective 5-HT7 receptor antagonist SB-269970 in awake rats. Experiments were performed on male Wistar rats (300-320 g). At 4 days before the experiment, rats were anesthetized and placed in a stereotaxic frame implantation of a guide cannula in the direction of the cisterna magna to be used for microinjection of saline or SB-269970 (100 microg/kg). On the day before the experiments a femoral artery and vein were cannulated to record arterial pressure and heart rate and to inject drugs to activate cardiovascular reflexes, respectively. The chemo-, baro- and cardiopulmonary reflexes were activated in different experimental groups before and after i.c. injection of saline or SB-269970. The antagonism of 5-HT7 receptors reduced: (a) the pressor (50+/-4 vs. 19+/-9 mm Hg) and bradycardic (-247+/-13 vs. -69+/-27 bpm) responses to chemoreflex activation; (b) the fall in MAP (-54+/-4 vs. -20+/-6 mm Hg) and the bradycardia (-294+/-12 vs. -98+/-34 bpm) in response to cardiopulmonary reflex activation; and (c) the gain of the baroreflex (-2.3+/-0.1 to -0.9+/-0.2 bpm/mm Hg). Intracisternal application of SB-269970 increased significantly baseline MAP in those rats previously submitted to the activation of a cardiovascular reflex but in naïve rats produced no changes in the baseline MAP were observed. The fact that cardiovascular responses to all reflexes tested were attenuated by the antagonism of 5-HT7 receptors suggests that brainstem 5-HT7 receptors brainstem facilitate the processing of the autonomic responses to cardiovascular reflex activation and that a 5-HT-containing pathway to the brainstem provides a normalizing input during challenges produced by cardiovascular reflex activation which seems to be mediated by 5-HT7 receptors.


Assuntos
Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Receptores de Serotonina/fisiologia , Vigília , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Vias de Administração de Medicamentos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Microinjeções/métodos , Fenóis/farmacologia , Ratos , Ratos Wistar , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sulfonamidas/farmacologia , Fatores de Tempo
7.
Brain Res ; 1054(1): 61-72, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16054601

RESUMO

Antagonism of central 5-HT1A and 5-HT7 receptors inhibits reflex-evoked vagal bradycardias indicating that 5-HT is released during these reflexes. The present experiments examined the effect of 5-HT depletion with para-chlorophenylalanine (p-CPA) on the cardiac vagal baroreflex and cardiopulmonary reflex in awake and anesthetized rats. Immunocytochemistry and neurochemical detection showed that p-CPA depleted the brainstem of 5-HT, but not of norepinephrine or dopamine. Depletion of 5-HT was associated with an increase in mean arterial pressure (MAP) in awake rats. This difference was abolished by anesthesia, which reduced MAP in both groups of animals. The baroreflex gain, whether calculated from the rise in pressure induced by phenylephrine or the fall in pressure evoked by sodium nitroprusside, was significantly attenuated in depleted rats compared to controls. This attenuation of the baroreflex gain was unaffected by subsequent anesthesia. 5-HT depletion also attenuated the cardiopulmonary reflex vagal bradycardias but this only reached statistical significance when the rats were anesthetized. The data support the view that 5-HT is released in the reflex activation of the cardiac vagal pathway.


Assuntos
Anestesia , Barorreflexo/fisiologia , Sistema Cardiovascular/fisiopatologia , Serotonina/deficiência , Nervo Vago/fisiopatologia , Vigília/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Barorreflexo/efeitos dos fármacos , Biguanidas/farmacologia , Monoaminas Biogênicas/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Química Encefálica/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fenclonina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Imuno-Histoquímica/métodos , Masculino , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Nervo Vago/efeitos dos fármacos , Vasodilatadores/farmacologia , Vigília/efeitos dos fármacos
8.
J Physiol ; 566(Pt 3): 939-53, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15905216

RESUMO

Brainstem 5-hydroxytryptamine (5-HT, serotonin)-containing neurones modulate cardiovascular reflex responses but the differing roles of the many 5-HT receptors have not been thoroughly investigated. The present experiments on anaesthetized rats investigated the role of 5-HT3 receptors in modulating vagal afferent evoked activity of nucleus tractus solitarius (NTS) neurones. Recordings were made from 301 NTS neurones receiving an input at long (> 20 ms) minimum onset latency from stimulation of the vagus nerve. These included 140 neurones excited by activating non-myelinated cardiopulmonary afferents by right atrial injection of phenylbiguanide (PBG). Ionophoretic application of PBG, a highly selective 5-HT3 receptor agonist, significantly increased activity (from 2.4 +/- 0.4 to 5.5 +/- 0.8 spikes s(-1)) in 96 of 106 neurones tested and in all 17 neurones tested the increase in activity (3.4 +/- 1.1 to 7.0 +/- 1.9 spikes s(-1)) was significantly attenuated (3.0 +/- 0.9 to 3.8 +/- 1.1 spikes s(-1)) by the selective 5-HT3 receptor antagonist granisetron. Ionophoretic application of PBG potentiated responses to vagus nerve and cardiopulmonary afferent stimulation, and granisetron significantly attenuated this cardiopulmonary input (20.2 +/- 5.7 to 10.6 +/- 4.1 spikes burst(-1)) in 9 of 10 neurones tested. Ionophoretic application of AMPA and NMDA also excited NTS neurones and these excitations could be selectively antagonized by the non-NMDA and NMDA receptor antagonists DNQX and AP-5, respectively. At these selective currents, DNQX and AP-5 also attenuated PBG- and cardiopulmonary input-evoked increases in NTS activity. These data are consistent with the hypothesis that vagal inputs, including non-myelinated cardiopulmonary inputs to the NTS, utilize a 5-HT-containing pathway which activates 5-HT3 receptors. This excitatory response to 5-HT3 receptor activation may be partly a direct postsynaptic action but part may also be due to facilitation of the release of glutamate which in turn acts on either non-NMDA or NMDA receptors to evoke excitation.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Receptores 5-HT3 de Serotonina/metabolismo , Reflexo/fisiologia , Núcleo Solitário/fisiologia , Nervo Vago/fisiologia , Anestesia , Animais , Retroalimentação/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Physiol ; 563(Pt 1): 319-31, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15611034

RESUMO

5-Hydroxytryptamine (5-HT; serotonin)-containing neurones contribute to reflex activation of parasympathetic outflow in a number of species, but the 5-HT receptors mediating these effects have yet to be fully determined. The present experiments demonstrate that central 5-HT7 receptors are involved in the vagal bradycardia evoked during the cardiopulmonary reflex, baroreflexes and the chemoreflex, as well as other autonomic changes caused by these reflexes. The experiments examined the effects of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 on these reflexes. For the cardiopulmonary reflex, when compared to time-matched vehicle control experiments, intracisternal application of SB-269970 (30-300 microg kg(-1), i.c.) dose-dependently attenuated the evoked bradycardia. At the highest dose, SB-269970 also attenuated the reflex hypotension and sympathoinhibition. The structurally different 5-HT7 receptor antagonist SB-656104 (100 microg kg(-1), i.c.) similarly attenuated the reflex bradycardia and hypotension. SB-269970 (100 microg kg(-1), i.c.) also attenuated the bradycardias evoked by electrical stimulation of aortic nerve afferents and the baroreflex evoked by the pressor response to phenylephrine (3-25 microg kg(-1), i.v.). The gain of the baroreflex was also significantly attenuated (0.15 +/- 0.06 versus 0.34 +/- 0.06 ms mmHg(-1)). Finally, SB-269970 (100 microg kg(-1), i.c.) significantly attenuated both the bradycardia and sympathoexcitation evoked by the chemoreflex. These data indicate that central 5-HT7 receptors play an important facilitatory role in the reflex activation of vagal outflow to the heart.


Assuntos
Encéfalo/fisiologia , Coração/inervação , Coração/fisiologia , Neurônios/fisiologia , Receptores de Serotonina/metabolismo , Reflexo/fisiologia , Nervo Vago/fisiologia , Anestesia , Animais , Barorreflexo/fisiologia , Bradicardia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...